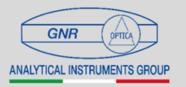


StressX:

XRD Solution to Residual Stress Determination


in Industrial Application Field

Alessandro Torboli – X-Ray Marketing Manager

GNR Analytical Instruments Group

G.N.R. Analytical Instruments Group

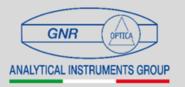
G.N.R. Analytical Instruments Group was established in 1984 in Milan, Italy.

G.N.R. Analytical Instruments Group designs and produces Optical Emission Spectrometers (OES) for the measurement of elemental composition of metal alloys and XRD/XRF Spectrometers for material structure and composition.

G.N.R. Analytical Instruments Group with a production of over 220 spectrometers/year is a leading company in the field of OES spark and XRD/XRF spectroscopy.

Origins of residual stresses in a component may be classified as:

Mechanical, Thermal and Chemical


Residual stresses can arise in materials at almost every process step:

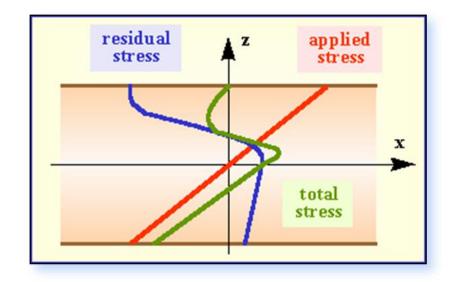
- **Primary product** : casting, forming, forging, extruding, rolling, bending, etc.
- Surface removal : machining, electro-erosion, etc.
- Joining : welding, brazing, etc.
- Mechanical surface treatments : shot peening, laser shock, etc.
- Heat treatments: quenching, carburising, nitriding, carbonitriding
- Chemical treatments: PVD, CVD coatings, electro deposition, etc.

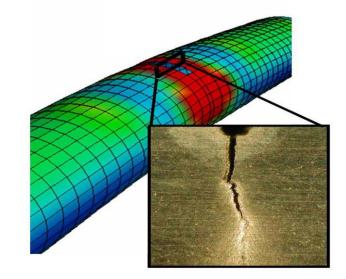
Residual stress plays an important role with respect to the operating performance of mechanical parts. It affects material properties as:

- fatigue
- fracture
- corrosion
- friction

In some case, the residual stress induced by manufacturing processes can be predicted.

It remains often necessary to adjust the theoretical calculations through experimental results obtained by **XRD measurements.**

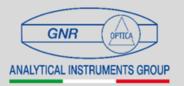



Compressive Residual Stress (**σ** < **0**)

- Reduces **crack** propagation
- Prolongs fatigue life and durability
- Increases strength and corrosion resistance
- Decreases total stress in the areas where high loads are applied

Tensile Residual Stress (**σ** > **0**)

- Increases crack propagation
- **Reduces the mechanical performance** of materials

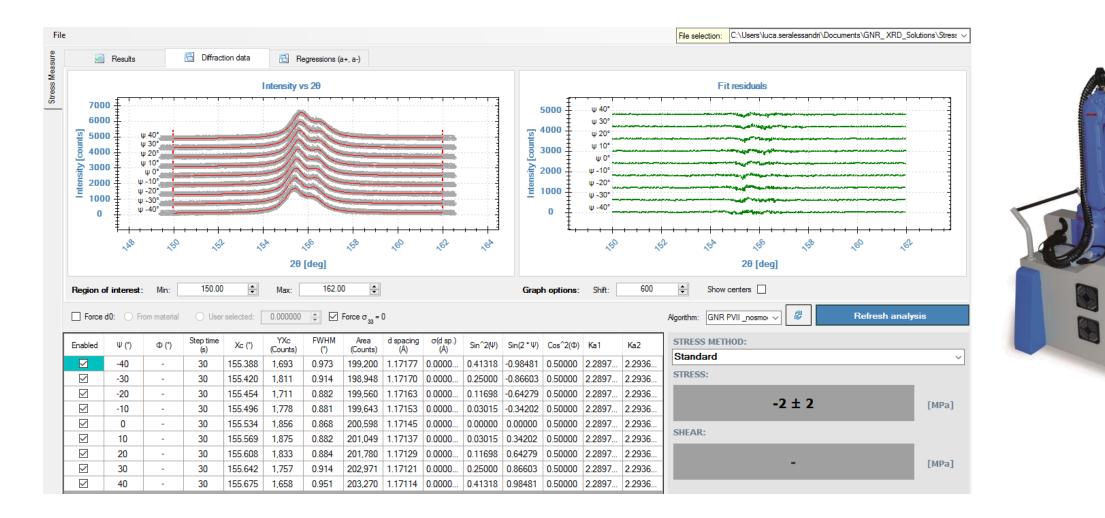


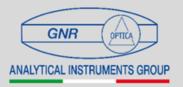
The calibration (alignment or zeroing) of the Robotic StressX is checked by two reference samples:

 Zero-stress sample (iron powder): prepared as reported in ASTM E915 (UNI EN 15305 constraints are larger than ASTM E 915)

2. ILQ (Inter Laboratory Qualified) sample - GNR_Master: prepared as reported in UNI EN 15305

Standard Method to verify alignment of X-ray diffractometer for residual stress measurements.


- Stress-Free Specimen preparation: iron powder with 1 < particle size < 45 μ m mixed with binder.
- Systematic Error: average of five measurements must be within 14 MPa.
- **Random Error:** standard deviation of five measurements should be within **7 MPa**.


File Name	Stress [MPa]	Average [MPa]	Std Dev [MPa]	ASTM E916 COMPLIANCE
stress_free_1	-6	-3.9	5.9	OK
stress_free_2	-6			
stress_free_3	-1			
stress_free_4	-1			
stress_free_5	-6			
stress_free_6	-1			
stress_free_7	-9			
stress_free_8	-5			
stress_free_9	-13			
stress_free_10	9			

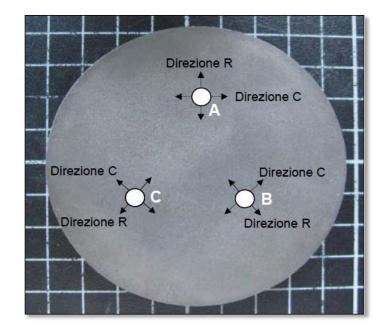
• The accuracy of this method is considered to be absolute because the specimen is stress-free.

ASTM E915

GNR ILQ Master Sample defined by Round Robin Procedure

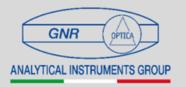
MASTER_GNR	Point	Stress X	Stress Tech	Seifert ID3003 PTS	Elphise Set-X	NN IS-StressX3000	σ _{ref} [MPa]	Std Dev	R_{σ} =2.8* Std Dev
	Α	-592	-542	-557	-566	-572	-566	18.5	51.8
C3	В	-617	-584	-620	-648	-581	-610	27.9	78.1
	с	-572	-528	-530	-549	-585	-553	25.3	70.8

Sample name: Master C3

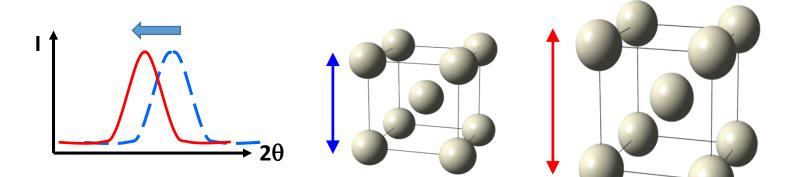

3 areas: A B C

Direction: circumferential (C)

 σ_{ref} = average stress over 5 instruments from 5 different labs

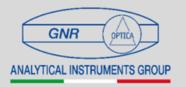

Std Dev = standard deviation over 5 measurements

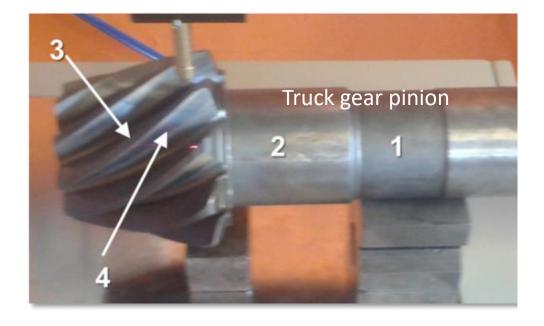
 R_{σ} = reproducibility = 2.8*Std Dev



STRESS X	Point	Stress	$\overline{\sigma}$	Std Dev	r_{σ} = 2.8*Std Dev		oref - ∂	CDσ	COMPLIANCE
	A1	-560	-580	11.8	33.0		13.8	30.1	ОК
	A2	-586					40.2	47.3	ОК
	A3	-577					21.4	42.0	OK
	A4	-588							
	A5	-587							
	B1	-648	-650	16.1	45.0		$ CD_{\sigma} =$	$r_{\sigma}^{2}\left(\frac{n-1}{n}\right)$	
	B2	-624					√	°(n)	
C3	B3	-653							
	B4	-661							
	B5	-665					$\sigma_{ref} - \overline{\sigma} \leq CD_{\sigma}$		
							•		
	C1	-584	-574	15.3	42.9				
	C2	-580					$\overline{\sigma} = \frac{1}{n} \sum_{i=1}^{n} \sigma_i$		
	C3	-549							
	C4	-587							
	C5	-571							

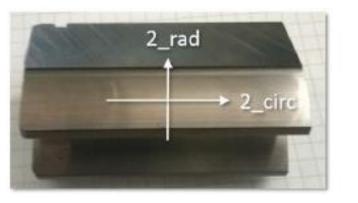
- XRD measurement reliability depens on:
 - Degree of crystallinity
 - Surface roughness
 - Non-flat surfaces
 - Highly textured material
 - Coarse grained material
 - Multiphase materials
 - Overlapping diffraction lines
 - Broad diffraction lines

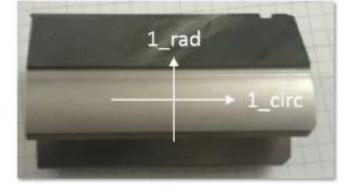



- 6-Axis anthropomorphic robot: accuracy and repeatability < 20 μ
- Selectable radius: 120, 140, 160 mm (Omega-mode; Chi-mode)
- Psi scan: programmable -45° / +45° with oscillations from 1° to 10°
- 2 Theta range: from 125° to 164°
- Cr, Co, Cu, Mn X-Ray Tube with mono or polycapillary collimation (120 μ)
- 300 W X-Ray Generator Integrated Cooling System
- 1D Hybrid Photon Counting (HPC) microstrip speed detector
- Auto Alignment Laser System: accuracy < 2 μ
- Compliance with ASTM E915 practice and UNI EN 15305
- Uni-axial, Bi-axial and Tri-axial stress state analysis
- Surface mapping with dynamic sections view
- High resolution USB Video Camera
- Custom Solutions

Effects of grinding not properly performed

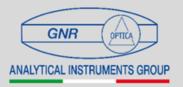
AREA	TREATMENT	RS (MPa)
1	GRINDING	-236 ± 6
2	SHOT PEENING	-648 ± 4
3	SHOT PEENING + GRINDING: Burned	-316 ±13
4	SHOT PEENING + GRINDING: not Burned	-561 ± 3

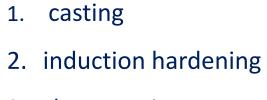




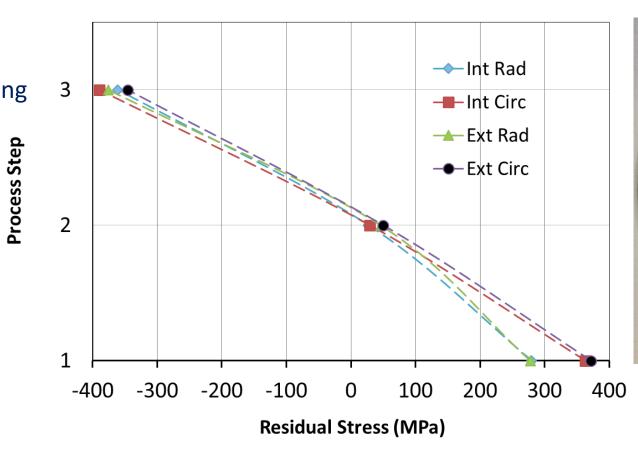
Measurement performed on pitch diameter of a gear.

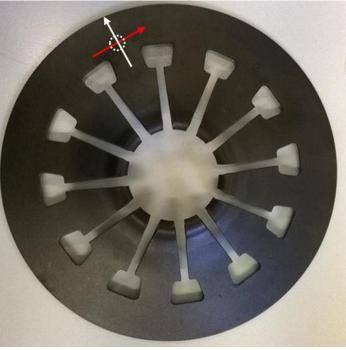
Surface Finishing: before and after shot peening treatment process.

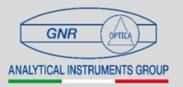

Measuring Point	Residua Stress [MPa]
Sample 1_rad	-417 ± 13
Sample 1_circ	-399 ± 12
Sample 2_rad	-1267 ± 15
Sample 2_circ	-1253 ± 12


Sample 2

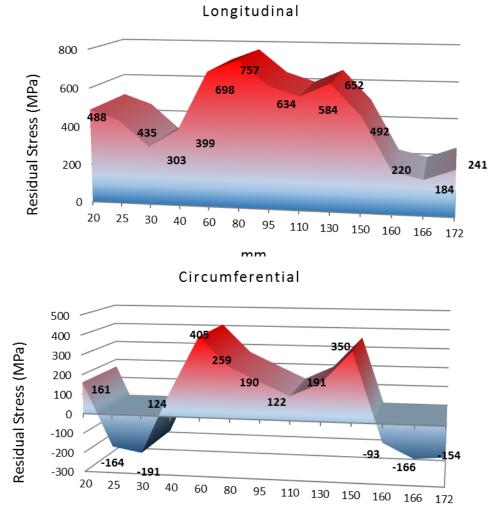
Sample 1




Application: Clutch Manufacturing


Diaphragm Spring

3. shot peening



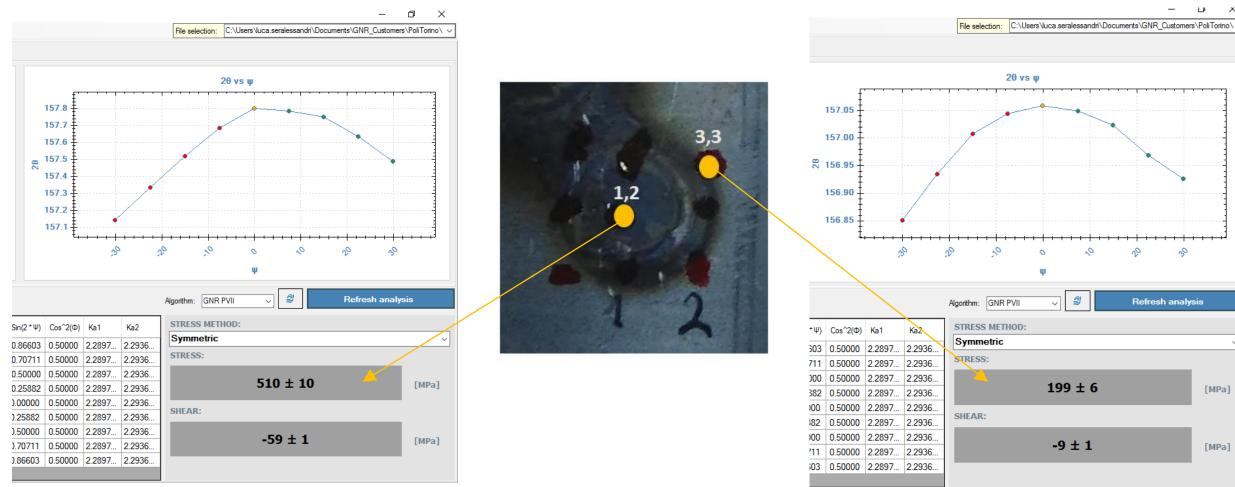
Application: Weld Bead

On site measurements: weld bead on mock-up of turbine shaft

(by courtesy of FOMAS Group).

mm

Crankshaft: laser alignment procedure and large goniometric radius (up to 160 mm) allow StressX to analyse complex mechanical component (shape and size) also in points traditionally difficult to be reached.

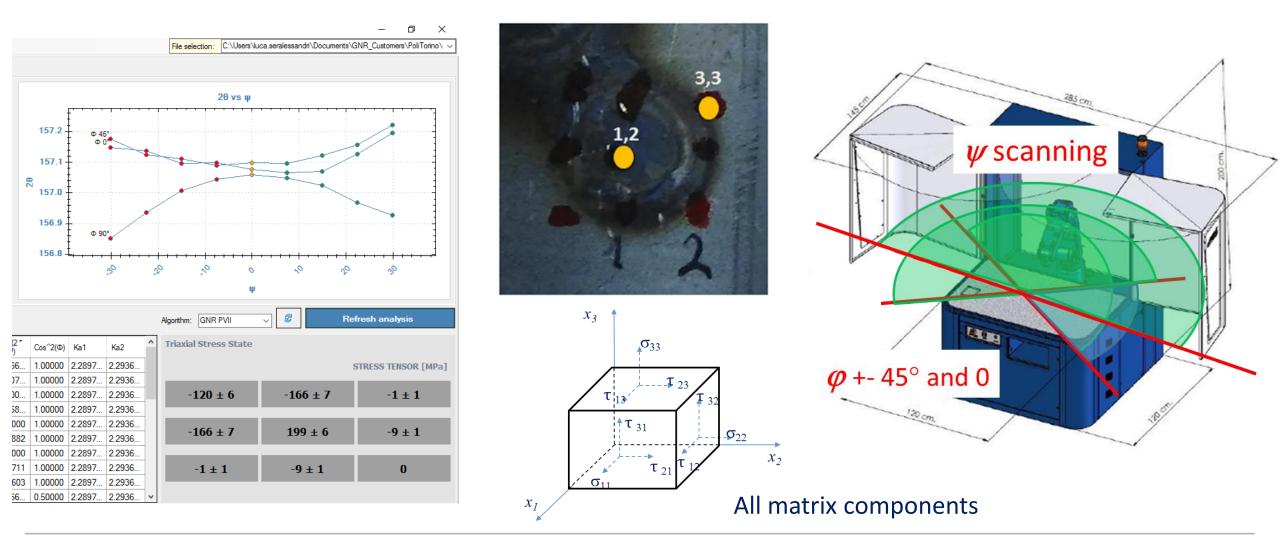

LP

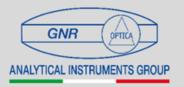
2

[MPa]

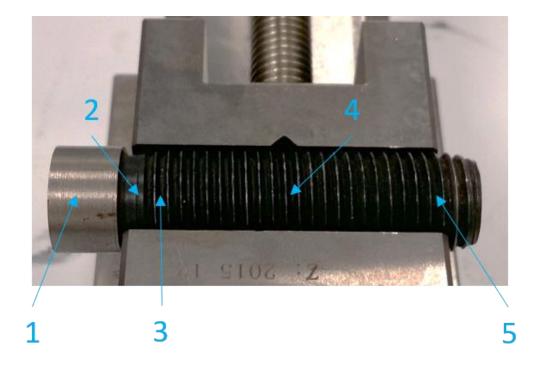
[MPa]

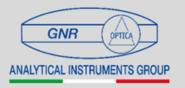
X




Suspensions: increasing of the tensile residual stress to the center of the weld

Application: Tri-axial Measurements


Suspensions: tri-axial analysis of welding, residual stress tensor as input for finite element simulations.

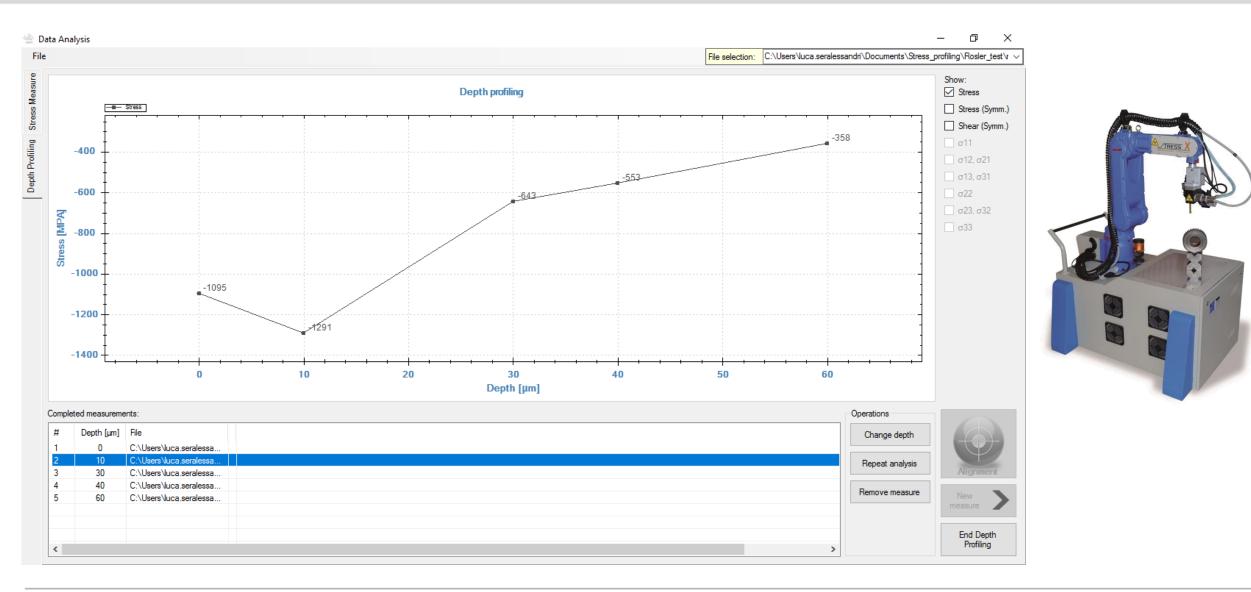


Screws Threads measured using polycapillary lens (diam: 120 μ)

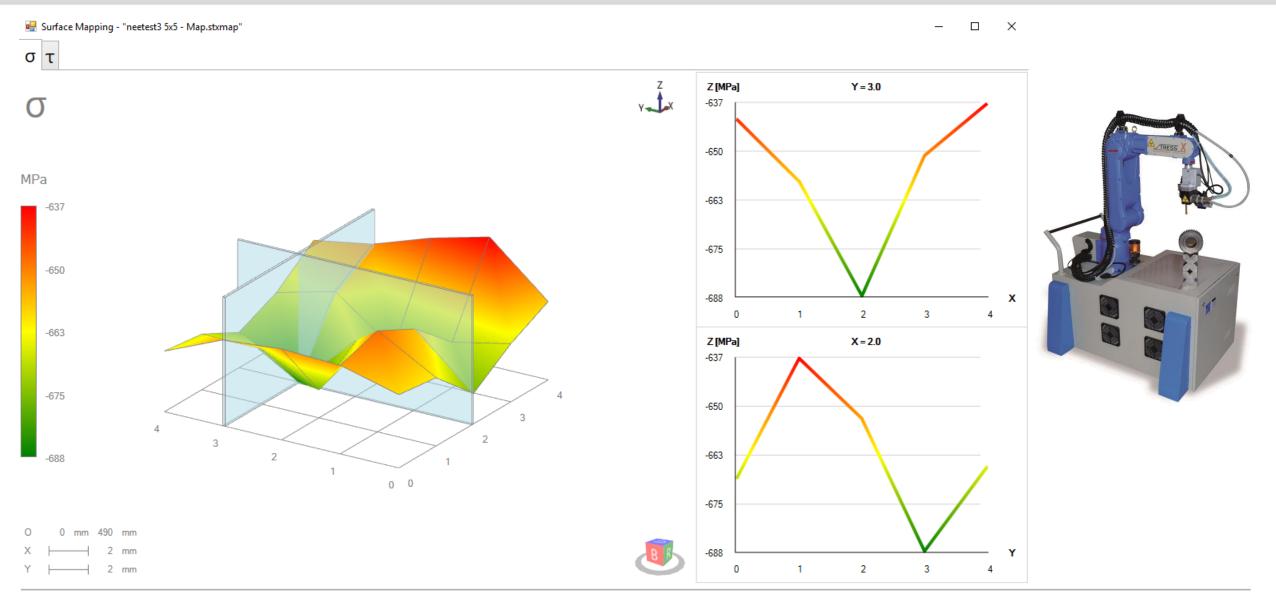
Sample	Measured points	RS (MPa)	Err (MPa)
M16 pitch diam.			
4mm	1	-301	11
	2	-43	3
	3	-40	4
	4	-49	3
	5	-79	5

Application: Comparing Performances

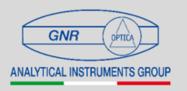
Saw Blades


Measuring Point	Stress (MPa)	Err
1	-231	7
2	-318	5
3	-291	4
4	-175	4
5	-69	4
6	-48	4
7	-65	5
8	-88	5

Measuring Point	Stress (MPa)	Err
1	-144	9
2	-122	8
3	-128	4
4	-183	4
5	-65	4
6	-81	4

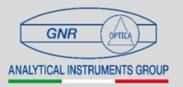


StressX: Depth Profiling GUI



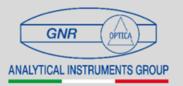
StressX: Residual Stress Mapping with Dynamic Sections View

SpiderX: Portability First


- High portability: < 19 Kg
- Batteries autonomy: 2 hours
- Radius: 70 mm
- Psi scan: programmable -45° / +45°
- 2 Theta range: from 135° to 165°
- Cr, Co, Cu, Mn X-Ray Tube with mono capillary collimation
- 4 W X-Ray Generator
- 1D Hybrid Photon Counting (HPC) microstrip speed detector
- Manual alignment assisted by laser: repeatability < 4 μ
- Compliance with ASTM E915 practice and UNI EN 15305
- Uni-axial, Bi-axial and Tri-axial stress state analysis

- Residual stresses can arise in materials at almost every process step.
- Compressive residual stress increases the fatigue life delaying crack initiation and propagation.
- Tensile stress reduces the mechanical performance of materials.
- X-ray diffraction is a non destructive method that allows to control and optimize the process.
- StressX and SpiderX are the GNR XRD solutions in agreement with EN 15305 and ASTM E915.

Some references



Tsinghua University

清華大学

Thanks again for your kind attention

GNR Analytical Instruments Group www.gnr.it G.N.R S.r.l. - Via Torino 7 28010 Agrate Conturbia (NO) Italy